Zowe Version 1.28.x Documentation

Table of contents:

e Zowe overview

e Zowe overview

¢ Zowe demo video

¢ Component overview

e Zowe Application Framework

e API| Mediation Layer

e Zowe CLI

e Zowe Explorer

e Zowe Client Software Development Kits (SDKs)

e Zowe Launcher

e ZEBRA (Zowe Embedded Browser for RMF/SMF and APIs) - Incubator
o Zowe Workflow wiZard - Incubator

Zowe Third-Party Software Requirements and Bill of Materials

e Zowe architecture

e Zowe architecture

Zowe architecture with high availability enablement on Sysplex
Zowe architecture when running in Kubernetes cluster
Zowe architecture when using Docker image

App Server

ZSS

API| Gateway

API Catalog

API Discovery

Caching service

MVS, JES, and USS Ul

* File APl and JES API

Cross Memory server

* Frequently Asked Questions

e Frequently Asked Questions

Zowe FAQ

e What is Zowe?

e Who is the target audience for using Zowe?
e What language is Zowe written in?

e What is the licensing for Zowe?

e Why is Zowe licensed using EPL2.0?

What are some examples of how Zowe technology might be used by z/OS products and
applications?

What is the best way to get started with Zowe?

What are the prerequisites for Zowe?

What's the difference between using Zowe with or without Docker?
Is the Zowe CLI packaged within the Zowe Docker download?
Does ZOWE support z/OS ZIIP processors?

How is access security managed on z/OS?

How is access to the Zowe open source managed?

How do | get involved in the open source development?

When will Zowe be completed?

Can | try Zowe without a z/OS instance?

e Zowe CLI FAQ

Why might | use Zowe CLI versus a traditional ISPF interface to perform mainframe tasks?
With what tools is Zowe CLI compatible?

Where can | use the CLI?

Which method should | use to install Zowe CLI?

How can | get help with using Zowe CLI?

How can | use Zowe CLI to automate mainframe actions?

How can | contribute to Zowe CLI?

e Zowe Explorer FAQ

Why might | use Zowe Explorer versus a traditional ISPF interface to perform mainframe tasks?
How can | get started with Zowe Explorer?

Where can | use Zowe Explorer?

How do | get help with using Zowe Explorer?

How can | use Secure Credential Store with Zowe Explorer?

How can | use FTP as my back-end service for Zowe Explorer?

How can | contribute to Zowe Explorer?

Version 1.28.2 (November 2022)
Version 1.28.2 (November 2022)
e Bug fixes

Zowe installation and packaging
API Mediation Layer
Zowe CLI

Version 1.28.1 (August 2022)
Version 1.28.1 (August 2022)
* Bug fixes

Zowe Application Framework

e Zowe CLI
e Version 1.28.0 (May 2022)
e Version 1.28.0 (May 2022)
e New features and enhancements
e Zowe APl Mediation Layer
e Zowe CLI
e Bug fixes
e Zowe APl Mediation Layer
e Zowe Application Framework
e Zowe CLI
* Vulnerabilities fixed
e Version 1.27.3 (April 2022)
e Version 1.27.3 (April 2022)
e New features and enhancements
e Imperative CLI Framework
e Bug fixes
e Zowe CLI
e |mperative CLI Framework
e DB2 Plug-in for Zowe CLI
e Secure Credential Store Plug-in for Zowe CLI
e Version 1.27.2 (February 2022)
e Version 1.27.2 (February 2022)
e Bug fixes
e Zowe CLI
e Version 1.27.1 (February 2022)
e Version 1.27.1 (February 2022)
e Bug fixes
e Zowe installation and packaging
e Version 1.27.0 (January 2022)
e Version 1.27.0 (January 2022)
* New features and enhancements
e Zowe APl Mediation Layer
e Zowe Application Framework
e z/OS FTP Plug-in for Zowe CLI
e Bug fixes
e Zowe APl Mediation Layer
e Zowe Application Framework
e Zowe CLI

e Version 1.26.0 (December 2021)
e Version 1.26.0 (December 2021)
* New features and enhancements
e Zowe installation and packaging
e Zowe APl Mediation Layer
e Zowe Application Framework
e Zowe CLI
e Zowe Explorer
* Bug fixes
e Zowe API Mediation Layer
e Zowe Application Framework
e Zowe CLI
e Zowe Explorer
e Version 1.25.0 (October 2021)
e Version 1.25.0 (October 2021)
¢ Notable changes
* New features and enhancements
e Zowe installation and packaging
e Zowe APl Mediation Layer
e Zowe Application Framework
e Zowe CLI
e Zowe Explorer
e Zowe JES/MVS/USS Explorers
e Bug fixes
e Zowe APl Mediation Layer
e Zowe Application Framework
e Zowe CLI
e Zowe Explorer
e Version 1.24.0 (September 2021)
e Version 1.24.0 (September 2021)
* New features and enhancements
e Zowe installation and configuration
e Zowe API Mediation Layer
e Zowe App Server
e Zowe CLI
e Zowe Explorer
* Bug fixes
e Zowe installation and configuration

Zowe API Mediation Layer

Zowe App Server
Zowe CLI
Zowe Explorer

Known Issues

e Version 1.23.0 (July 2021)
e Version 1.23.0 (July 2021)

New features and enhancements
e Zowe APl Mediation Layer

e Zowe App Server

e Zowe CLI

e Zowe Explorer

Bug fixes

e Zowe APl Mediation Layer

e Zowe App Server

e Zowe CLI

e Zowe Explorer

e Previous versions

¢ Previous versions

Version 1.22.0 LTS (June 2021)

* Notable changes

e New features and enhancements
e Bug fixes

Version 1.21.0 LTS (April 2021)

* New features and enhancements
e Bug fixes

Version 1.20.1 LTS (March 2021)

e Bug fixes

Version 1.20.0 LTS (March 2021)

e New features and enhancements
e Bug Fixes

Version 1.19.1 LTS (February 2021)

¢ Notable changes

e New features and enhancements
e Bug fixes

Version 1.19.0 LTS (February 2021)

* Notable changes

e New features and enhancements

e Bug Fixes

Version 1.18.0 LTS (January 2021)

e Notable changes

e New features and enhancements
e Bug Fixes

Version 1.17.0 LTS (November 2020)
e Notable changes

e New features and enhancements
* Bug fixes

Version 1.16.0 LTS (October 2020)

e Notable changes

e New features and enhancements
* Bug fixes

e Zowe Explorer

Version 1.15.0 LTS (September 2020)
e Notable changes

* New features and enhancements
e Bug fixes

Version 1.14.0 LTS (August 2020)

¢ Notable changes

* New features and enhancements
e Bug fixes

Version 1.13.0 LTS (July 2020)

e Notable changes

* New features and enhancements
e Bug fixes

Version 1.12.0 LTS (June 2020)

e New features and enhancements
* Bug fixes

Version 1.11.0 LTS (May 2020)

e New features and enhancements
e Bug fixes

Version 1.10.0 LTS (April 2020)

e New features and enhancements
e Bug fixes

Version 1.9.0 LTS (February 2020)

* New features and enhancements

e Bug fixes

Version 1.8.1 (February 2020)

e Bug fixes for Zowe CLI

Version 1.8.0 (February 2020)

e New features and enhancements

* Bug fixes

Version 1.7.1 (December 2019)

e New features and enhancements

e Bug fixes

Version 1.7.0 (November 2019)

e New features and enhancements

e Bug fixes

Version 1.6.0 (October 2019)

e What's new in the Zowe App Server
e What's new in Zowe CLI

e What's new in the Visual Studio Code (VSC) Extension for Zowe
Version 1.5.0 (September 2019)

e What's new in APl Mediation Layer

e What's new in the Zowe App Server
e What's new in Zowe CLI and Plug-ins
Zowe SMPJE Alpha (August 2019)
Version 1.4.0 (August 2019)

e What's new in APl Mediation Layer

e What's new in the Zowe App Server
e What's new in Zowe CLI and Plug-ins
Version 1.3.0 (June 2019)

e What's new in APl Mediation Layer

e What's new in the Zowe App Server
e What's new in Zowe CLI and Plug-ins
Version 1.2.0 (May 2019)

e What's new in the Zowe installer

e What's new in APl Mediation Layer

e What's new in the Zowe App Server
e What's new in Zowe CLI and Plug-ins
e What's new in Zowe USS API

Version 1.1.0 (April 2019)

e What's new in Zowe system requirements
e What's new in the Zowe App Server
e What's new in the Zowe CLI and Plug-ins

e What's new in APl Mediation Layer
e Version 1.0.1 (March 2019)
e What's new in Zowe installation on z/OS
e What's new in the Zowe App Server
e What's new in Zowe CLI
e What's new in the Zowe REST APIs
e What's changed
¢ Version 1.0.0 (February 2019)
e What's new in APl Mediation Layer
e What's new in Zowe CLI
e What's new in the Zowe Desktop
e What's new in the Zowe App Server
e What's changed
e Known issues
Getting started with Zowe
Getting started with Zowe
e Learning about Zowe
e Install and use
e Zowe versions for use with other products and plugins
e Getting involved
Zowe CLI quick start
Zowe CLI quick start
¢ |nstalling
e Software Requirements
 Installing Zowe CLI core from public npm
e |Installing CLI plug-ins
e |ssuing your first commands
e Listing all data sets under a high-level qualifier (HLQ)
e Downloading a partitioned data-set (PDS) member to local file
¢ Using profiles
e Profile types
* Creating a zosmf profile
e Using a zosmf profile
e Writing scripts
e Example:
¢ Next Steps
Information roadmap for Zowe APl Mediation Layer
Information roadmap for Zowe APl Mediation Layer

e Fundamentals
e |Installing
¢ Configuring and updating
e Using Zowe API Mediation Layer
¢ Onboarding APIs
e Security
e Contributing to Zowe API Mediation Layer
¢ Troubleshooting and support
e Community resources
Information roadmap for Zowe Application Framework
Information roadmap for Zowe Application Framework
e Fundamentals
* Installing
e Configuring and updating
* Using Zowe Application Framework
¢ Developing Zowe Desktop plug-ins
e Samples
e Contributing to Zowe Application Framework
¢ Troubleshooting and support
e Community resources
Information roadmap for Zowe CLI
Information roadmap for Zowe CLI
e Fundamentals
e Quick start
* Installing
e Configuring and updating
e Using Zowe CLI and plug-ins
¢ Developing a Zowe CLI plug-in
e Contributing to Zowe CLI
¢ Troubleshooting and support
e Community resources
Information Roadmap for Zowe Explorer
Information Roadmap for Zowe Explorer
e Fundamentals
¢ |nstalling and configuring
e Using Zowe Explorer
» Extending Zowe Explorer
e Contributing to Zowe Explorer

¢ Troubleshooting and support
e Community resources
Information roadmap for Zowe Client SDKs
Information roadmap for Zowe Client SDKs
e Fundamentals
e |Installing
e Using Zowe Client SDKs

e Zowe Node.js SDK

e Zowe Python SDK
e Contributing to Zowe Client SDKs
¢ Troubleshooting and support
e Community resources
Zowe learning resources
Zowe learning resources
¢ Blogs
e Videos
* Webinars
e Community
e Training
Overview
Overview
Installation roadmap
Installation roadmap
e Stage 1: Plan and prepare

Stage 2: Install the Zowe z/OS runtime

Stage 3: Configure the Zowe z/OS runtime

Stage 4: Verify the installation

Looking for troubleshooting help?
Planning the installation
Planning the installation
* Topology of the Zowe z/OS launch process
e RUNTIME_DIR
e INSTANCE_DIR
e KEYSTORE_DIRECTORY
UNIX System Services considerations for Zowe
UNIX System Services considerations for Zowe
e Whatis USS?
e Setting up USS for the first time

* Language environment
e OMVS segment
e Address space region size
System requirements
System requirements
e 7/OS system requirements
e 7/0OS
e Node.js
e Java
e 7/OSMF (Optional)
* User ID requirements
e ZWESVUSR
e ZWESIUSR
e ZWEADMIN
e zOowe_user
e Network requirements
e Zowe Docker requirements
e Zowe Desktop requirements (client PC)
e Feature requirements
e Multi-Factor Authentication (MFA)
¢ Single Sign-On (SSO)
e Memory requirements
Installing Node.js on z/OS
Installing Node.js on z/OS
e Supported Node.js versions
e How to obtain IBM SDK for Node.js - z/OS
Hardware and software prerequisites
Installing the PAX edition of Node.js - z/OS
Installing the SMPJE edition of Node.js - z/OS
Configuring z/OSMF
Configuring z/OSMF
¢ 7/OS requirements for z/OSMF configuration
» Configuring z/OSMF
e 7/OSMF REST services for the Zowe CLI
¢ Configuration of z/OSMF to properly work with API ML

Configuring z/OSMF Lite (for non-production use)
Configuring z/OSMF Lite (for non-production use)
e Introduction

e Assumptions
¢ Software Requirements
e Minimum Java level
e WebSphere® Liberty profile (z/OSMF V2R3 and later)
e System settings
e Web browser
¢ Creating a z/OSMF nucleus on your system
e Running job IZUNUSEC to create security
e Running job IZUMKEFS to create the z/OSMF user file system
e Copying the IBM procedures into JES PROCLIB
e Starting the z/OSMF server
e Accessing the zZOSMF Welcome page
e Mounting the z/OSMF user file system at IPL time
¢ Adding the required REST services
e Enabling the z/OSMF JOB REST services
e Enabling the TSO REST services
e Enabling the z/OSMF data set and file REST services
e Enabling the z/JOSMF Workflow REST services and Workflows task Ul
¢ Troubleshooting problems
e Common problems and scenarios
* Tools and techniques for troubleshooting
e Appendix A. Creating an IZUPRMxx parmlib member
* Appendix B. Modifying IZUSVR1 settings
e Appendix C. Adding more users to z/OSMF
e Before you Begin
e Procedure
e Results
* Installing Zowe runtime from a convenience build
* Installing Zowe runtime from a convenience build
¢ Obtaining and preparing the convenience build
¢ |nstalling the Zowe runtime
e Step 1: Locate the install directory
e Step 2: Choose a runtime USS folder
e Step 3: Choose a dataset HLQ for the SAMPLIB and LOADLIB
e Step 4 (Method 1): Install the Zowe runtime using shell script
e Step 4 (Method 2): Install the Zowe runtime using z/OSMF Workflow
¢ Next steps
¢ |nstalling Zowe SMPJE

Installing Zowe SMP/E
e Introduction
e Zowe description
e Zowe FMIDs
e Program materials
e Basic machine-readable material
e Program source materials
e Publications useful during installation
e Program support
e Statement of support procedures
e Program and service level information
e Program level information
» Service level information
¢ |nstallation requirements and considerations
e Driving system requirements
* Target system requirements
e FMIDs deleted
e [nstallation instructions
e SMPJE considerations for installing Zowe
e SMPJE options subentry values
e Qverview of the installation steps
e Download the Zowe SMPJE package
e Allocate file system to hold the download package
e Upload the download package to the host
e Extract and expand the compressed SMPMCS and RELFILEs
e Sample installation jobs
e Create SMPJE environment (Optional)
e Perform SMP/E RECEIVE
* Allocate SMPJE target and distributions libraries
e Allocate, create and mount ZSF files (Optional)
* Allocate z/OS UNIX paths
e Create DDDEF entries
e Perform SMPJE APPLY
e Perform SMP/E ACCEPT
e Run REPORT CROSSZONE
* Cleaning up obsolete data sets, paths, and DDDEFs
e Activating Zowe
e File system execution

* Zowe customization
Installing Zowe SMP/E build with z/OSMF workflow
Installing Zowe SMP/E build with z/OSMF workflow
e Activating Zowe
* File system execution
e Zowe customization
Docker Installation Roadmap (Technical Preview)
Docker Installation Roadmap (Technical Preview)
e Stage 1: Plan and prepare
e Stage 2: Install the Zowe runtime on z/OS
* Stage 3: Configure the Zowe z/OS runtime
e Stage 4: Verify the installation
e Stage 5: Install Docker image
e Stage 6: Configure Docker container
¢ Looking for troubleshooting help?
Installing Zowe runtime Docker Image (Technical Preview)
Installing Zowe runtime Docker Image (Technical Preview)
e |Installing via Docker Hub
¢ |nstalling via direct download
e Loading an image from .tar file
¢ Confirming the installation
e Upgrading
¢ Verifying authenticity using Docker signing
Configuring Zowe runtime Docker Container (Technical Preview)
Configuring Zowe runtime Docker Container (Technical Preview)
e Working with Docker mounts
* Quick start for the Zowe runtime in Docker
e Customizing Zowe container start script
e Using an instance directory external to the Zowe container
e Using external certificates
e Starting the container
e Using Zowe-based products, plugins and apps
* Zowe's docker mount locations
Installing Zowe from a Portable Software Instance
Installing Zowe from a Portable Software Instance
¢ Prerequisites
e Procedure
Address z/OSMF Requirements

e Address z/OSMF Requirements
e Acquire a z/OSMF Portable Software Instance
e Acquire a z/OSMF Portable Software Instance
e Download the Portable Software Instance from Zowe Downloads
¢ Register Portable Software Instance in z/OSMF
e |nstall Product Software Using z/OSMF Deployments
e |nstall Product Software Using z/OSMF Deployments
e Configuring the z/OS system for Zowe
e Configuring the z/OS system for Zowe
e Grant users permission to access z/OSMF
e Configure an ICSF cryptographic services environment
* Configure security environment switching
¢ Configure address space job naming
¢ Configure multi-user address space (for TSS only)
* User IDs and groups for the Zowe started tasks
e Configure ZWESVSTC to run under ZWESVUSR user ID
e Configure ZWESLSTC to run Zowe high availability instances under ZWESVUSR user ID
* Configure the cross memory server for SAF
* Configure main Zowe server to use identity mapping
e Using RACF
e Using ACF2
e Using TSS
* Configure signed SAF Identity tokens (IDT)
e Configuring Zowe certificates
e Configuring Zowe certificates
e Northbound Certificate
e Southbound Certificate
e Trust store
» Certificates in the Zowe architecture
e Keystore versus key ring
e Keystore directory creation
e Extended key usage
e Configuring Zowe certificates in UNIX files
e Configuring Zowe certificates in UNIX files
* Self-signed certificate
e Manually import a certificate authority into a web browser
¢ Generate a Keystore Directory
* Generate a certificate with custom values

e Configure zowe-setup-certificates.env to use existing certificates
¢ Hints and tips
e Configuring Zowe certificates in a key ring
e Configuring Zowe certificates in a key ring
e Customizing the ZWEKRING JCL
e PRODUCT variable
e HOSTNAME and IPADDRESS
e ZOWERING and LABEL labels
e ROOTZFCA label
e Results
e Cleanup
* Installing and configuring the Zowe cross memory server (ZWESISTC)
* Installing and configuring the Zowe cross memory server (ZWESISTC)
e PDS sample library and PDSE load library
e Load module
e APF authorize
* APF authorize PLUGLIB
e Key 4 non-swappable
e PARMLIB
e PROCLIB
* SAF configuration
e Summary of cross memory server installation
e Starting and stopping the cross memory server on z/OS
e Zowe auxiliary service
* When to configure the auxiliary service
e |Installing the auxiliary service
e Creating and configuring the Zowe instance directory
e Creating and configuring the Zowe instance directory
* Introduction
¢ Prerequisites
¢ Creating an instance directory
¢ Updating the instance.env configuration file
e Zowe prerequisites
e Domain, Hostname and IP Address
e Component groups
e Keystore configuration
e Address space names
* Ports

e API Mediation Layer configuration

e Cross memory server

e Extensions
¢ Updating the zowe.yaml configuration file

e Known limitations for Zowe high availability

e Creating the zowe.yaml file

e High level overview of YAML configuration file

e Extract sharable configuration out of zowe.yam|

e Configuration override

e YAML configurations - certificate

e YAML configurations - zowe

e YAML configurations - java

* YAML configurations - node

e YAML configurations - zOSMF

e YAML configurations - components

e YAML configurations - halnstances
¢ Hints and tips
Installing and starting the Zowe started task (ZWESVSTC)
Installing and starting the Zowe started task (ZWESVSTC)
e Step 1: Copy the PROCLIB member ZWESVSTC
e Step 2: Configure ZWESVSTC to run under the correct user ID
e Step 3: Launch the ZWESVSTC started task

e Option 1: Starting Zowe from a USS shell

e QOption 2: Starting Zowe with the z/OS START command
Start APl Mediation Layer as a standalone component
Start APl Mediation Layer as a standalone component
Zowe Auxiliary Address space
Zowe Auxiliary Address space
Configure Zowe with z/OSMF Workflows
Configure Zowe with z/OSMF Workflows
* Configure z/OS Security Manager

Configure Zowe certificates

Configure Zowe Cross Memory Server

Create and configure the Zowe instance directory and start the Zowe started task
* Register and execute workflow in the zZOSMF web interface

Zowe high availability installation roadmap

Zowe high availability installation roadmap

e Stage 1: Plan and prepare

Stage 2: Install the Zowe runtime

Stage 3: Configure the Zowe high availability runtime

Stage 4: Verify the installation

Looking for troubleshooting help?
Configuring Sysplex for high availability
Configuring Sysplex for high availability
* Sysplex environment requirements
e Configuring Sysplex Distributor
Configuring z/OSMF for high availability in Sysplex
Configuring z/OSMF for high availability in Sysplex
* Sysplex environment requirements
e Setting up z/OSMF nucleus
e Requirements of zJOSMF HA parmlib member in Sysplex
e Configuring z/OSMF for high availability
Configuring the Caching Service for HA
Configuring the Caching Service for HA
¢ Creating a VSAM data set
Installing and starting the Zowe high availability started task (ZWESLSTC)
Installing and starting the Zowe high availability started task (ZWESLSTC)
e Step 1: Copy the PROCLIB member ZWESLSTC
e Step 2: Configure ZWESLSTC to run under the correct user ID
e Step 3: Launch the ZWESLSTC started task
e Before you begin
e Procedure
e Next steps
Verifying Zowe installation on z/OS
Verifying Zowe installation on z/OS
» Verifying Zowe Application Framework installation
» Verifying API Mediation installation
¢ Verifying z/OS Services installation
Stopping the Zowe server components started task
Stopping the Zowe server components started task
e Stopping the ZWESVSTC started task
e Stopping the ZWESLSTC started task
Upgrading the z/OS system for Zowe
Upgrading the z/OS system for Zowe
¢ Upgrading the instance directory
e Important note for users upgrading to v1.14

¢ Updating the PROCLIB members
e Updating the cross memory server load modules
* Updating the system and security configuration
e Upgrading the keystore directory
e Service disruption during upgrades
e Zowe extensions
Uninstalling Zowe from z/OS
Uninstalling Zowe from z/OS
Introduction
Introduction
e Known limitations
Prerequisites
Prerequisites
e Kubernetes cluster
e kubectl tool
Downloading and installing
Downloading and installing
e Downloading
e Downloading configuration samples
e Downloading container images
* Installing
e Upgrading
Configuring
Configuring
1. Create namespace and service account
¢ 2. Create Persistent Volume Claim (PVC)
¢ 3. Create and modify ConfigMaps and Secrets
e 4. Expose APl Mediation Layer components
* 4a. Create service
e 4b. Create Ingress (Bare-metal)
e 4c. Create Route (OpenShift)
e Customizing or manually creating ConfigMaps and Secrets
¢ PodDisruptionBudget
» HorizontalPodAutoscaler
* Kubernetes v1.21+
Starting, stopping, and monitoring
Starting, stopping, and monitoring
e Starting Zowe containers

e Port forwarding (for minikube only)
e Verifying Zowe containers
e Monitoring Zowe containers
e Monitoring Zowe containers via Ul
e Monitoring Zowe containers via CLI
e Stopping, pausing or removing Zowe containers
System requirements
System requirements
* Client-side
e Host-side
¢ Free disk space
Installing the ssh2 Package for Zowe CLI
Installing the ssh2 Package for Zowe CLI
e Windows
e Unix
e MacOS
Installing Zowe CLI with Node.js 16 on Windows
Installing Zowe CLI with Node.js 16 on Windows
e Additional Considerations
Installing Zowe CLI
Installing Zowe CLI
e Methods to install Zowe CLI
¢ |Installing Zowe CLI from a local package
* Installing Zowe CLI from an online registry
Install CLI from Online Registry Via Proxy
Install CLI from Online Registry Via Proxy
Updating Zowe CLI
Updating Zowe CLI
¢ Migrating to Long-term Support (LTS) version
¢ |dentify the currently installed version of Zowe CLI
 |dentify the currently installed versions of Zowe CLI plug-ins
e Update Zowe CLI from the online registry
e Update or revert Zowe CLI to a specific version
e Update Zowe CLI from a local package
Uninstalling Zowe CLI
Uninstalling Zowe CLI
Zowe CLI Development Roadmap (Technical Preview)
Zowe CLI Development Roadmap (Technical Preview)

Install the Zowe CLI @next version
Install the Zowe CLI @next version
¢ |nstallation guidelines
¢ Prerequisites
e Install Zowe CLI from npm
e Install Zowe CLI from a download
Configure Secure Credential Store on z/Linux operating systems
Configure Secure Credential Store on z/Linux operating systems
Configure Zowe CLI on operating systems where the Secure Credential Store is not available
Configure Zowe CLI on operating systems where the Secure Credential Store is not available
* V1 Profiles (Current Profiles)
e Team Configuration
Using Daemon Mode (Technical Preview)
Using Daemon Mode (Technical Preview)
» Feature overview
¢ Preparing for installation
e Enable daemon mode
e Disable daemon mode
¢ Running Zowe commands in daemon mode
Configure daemon mode on z/Linux operating systems
Configure daemon mode on z/Linux operating systems
Using Global Profile Configuration (Technical Preview)
Using Global Profile Configuration (Technical Preview)
e Feature overview
* Benefits
e Changes to secure credential storage
e |nitializing global configuration
e Initializing user-specific configuration (Optional)
¢ Editing global configuration
e Managing credential security
e Storing properties automatically
* Tips for efficient configuration
e Command option order of precedence
e Tips for using the base profile
* Sharing global configuration
e Example configurations
Installing Zowe Explorer
Installing Zowe Explorer

Software Requirements

Installing

Configuration

Relevant Information
e Zowe Explorer Profiles
e Zowe Explorer Profiles
e Working with Zowe Explorer profiles
e Associate Profile
* Enabling Secure Credential Store with Zowe Explorer
* For Zowe CLI users
» Use Base Profile and Token with Existing Profiles
e Access services through APl ML with SSO
e Login to the Authentication Service
e Configuring Zowe Application Framework
e Configuring Zowe Application Framework
e Configuring the framework as a Mediation Layer client
e Enabling the Application Server to register with the Mediation Layer
e Accessing the Application Server
e Setting up terminal application plug-ins
e Setting up the TN3270 mainframe terminal application plug-in
e Setting up the VT Terminal application plug-in
e Configuration file
e Network configuration
e HTTP
e HTTPS
e Network example
* Configuration Directories
e Directories example
e Old defaults
¢ Application plug-in configuration
e Plug-ins directory example
¢ Logging configuration
e 7SS configuration
e Connecting App Server to ZSS
e Configuring ZSS for HTTPS
* Installing additional ZSS instances
e Configuring AT-TLS on Client System
e Controlling access to applications

e Controlling application access for all users

e Controlling application access for individual users
Controlling access to dataservices

e Defining the RACF ZOWE class

e Enabling RBAC

e Creating authorization profiles

e Creating generic authorization profiles

e Configuring basic authorization

e Endpoint URL length limitations

Multi-factor authentication configuration

e Session duration and expiration

e Configuration

Enabling tracing

e Zowe Application Server tracing

e Loglevels

e Enabling tracing for ZSS

Zowe Application Framework logging

e Controlling the logging location

e Retaining logs

Administering the servers and plugins using an API

Configuring Zowe CLI

Configuring Zowe CLI

Setting CLI log levels
Setting the CLI home directory

Configuring the Zowe APIs

Configuring the Zowe APIs

Advanced Gateway features configuration

Advanced Gateway features configuration

Prefer IP Address for API Layer services
SAF as an Authentication provider

Enable JWT token refresh endpoint

e Change password with SAF provider

e Change password with z/OSMF provider
Gateway retry policy

Gateway client certificate authentication
Gateway timeouts

CORS handling

Encoded slashes

Connection limits

Routed instance header

Distributed load balancer cache

Replace or remove the Catalog with another service
API Mediation Layer as a standalone component
SAF Resource Checking

e Checking providers

API Gateway configuration parameters

API Gateway configuration parameters

Runtime configuration

e Environment variables
Service configuration
Zuul configuration
Hystrix configuration
AT-TLS

Getting started tutorial

Getting started tutorial

Learning objectives

Estimated time

Prerequisites and assumptions

Logging in to the Zowe Desktop

Querying JES jobs and viewing related status in JES Explorer
Using the 3270 Terminal in the Zowe Desktop to view the job
Editing a data set in MVS Explorer

Using the Zowe CLI to edit a data set

Viewing the data set changes in MVS Explorer

Next steps

e (Go deeper with Zowe

e Try the Extending Zowe scenarios

e Give feedback

Using the Zowe Desktop

Using the Zowe Desktop

Navigating the Zowe Desktop

e Accessing the Zowe Desktop

e Logging in and out of the Zowe Desktop
e Changing user password

e Updating an expired password

e Pinning applications to the task bar

Personalizing the Desktop
Changing the desktop language

e Zowe Desktop application plug-ins

Hello World Sample
IFrame Sample
z/OS Subsystems
3270 Terminal
VT Terminal

API Catalog
Editor

Workflows

JES Explorer
MVS Explorer
USS Explorer

* Using the Workflows application plug-in

Logging on to the system
Updating the data display
Configuration

Adding a z/OSMF server
Testing a server connection
Setting a server as the default z/OSMF server
Removing a server

Reload a server configuration
Save a server configuration
Workflows

Searching workflows
Defining a workflow

Viewing tasks

Task work area

Performing a task

Checking a task

Managing tasks

Viewing warnings

e Using the Editor
e Using the Editor
¢ Specifying a highlighting language

¢ Open a dataset

e Deleting a file or folder

Opening a directory

Creating a new directory

Creating a new file

Hotkeys
Using API Catalog
Using API Catalog
e API Versioning
¢ View Service Information and APl Documentation in the API Catalog
e Swagger "Try it out" functionality in the API Catalog
e Make a request
¢ Static APIs refresh functionality in the API Catalog
¢ Change password via API Catalog
Using Metrics Service (Technical Preview)
Using Metrics Service (Technical Preview)
* API Mediation Layer Metrics Service Demo Video
e View HTTP Metrics in the Metrics Service Dashboard
Using Zowe CLI
Using Zowe CLI
e Displaying help
* Top-level help
e Group, action, and object help
e Launch local web help
¢ Viewing web help
¢ How command precedence works
e |ssuing commands
¢ Using profiles
e Displaying profile help
e Service profiles
e Base profiles
e Profile best practices
* Testing connection to z/OSMF
* Integrating with API Mediation Layer
e How token management works
e Loggingin
e Logging out
e Accessing a service through API ML
» Accessing multiple services with SSO
e Accessing services through SSO + one service not through APIML

» Accessing services through SSO + one service through API ML but not SSO
e Working with certificates
» Configure certificates signed by a Certificate Authority (CA)
e Extend trusted certificates on client
* Bypass certificate requirement
¢ Using environment variables
e Formatting environment variables
e Setting environment variables in an automation server
¢ Using the prompt feature
e Writing scripts
* Understanding core command groups
Extending Zowe CLI
Extending Zowe CLI
Software requirements for Zowe CLI plug-ins
Software requirements for Zowe CLI plug-ins
Installing Zowe CLI plug-ins
Installing Zowe CLI plug-ins
¢ Installing plug-ins from an online registry
¢ |nstalling plug-ins from a local package
¢ Validating plug-ins
e Updating plug-ins
e Update plug-ins from an online registry
e Update plug-ins from a local package
¢ Uninstall Plug-ins
IBM® CICS® Plug-in for Zowe CLI
IBM® CICS® Plug-in for Zowe CLI
¢ Use cases
e Commands
e Software requirements
e |Installing
* Creating a user profile
IBM® Db2® Database Plug-in for Zowe CLI
IBM® Db2® Database Plug-in for Zowe CLI
e Use cases
e Commands
e Software requirements
* Installing
e |Installing from an online registry

e Installing from a local package
¢ Addressing the license requirement
e Server-side license
e Client-side license
¢ Creating a user profile
e SQLO805N: Database BIND
IBM® z/OS FTP Plug-in for Zowe CLI
IBM® z/OS FTP Plug-in for Zowe CLI
e Use cases
e Commands
» Software requirements
¢ |Installing
¢ Creating a user profile
IBM® IMS™ Plug-in for Zowe CLI
IBM® IMS™ Plug-in for Zowe CLI
¢ Use cases
e Commands
e Software requirements
¢ |nstalling
e Creating user profiles
IBM® MQ Plug-in for Zowe CLI
IBM® MQ Plug-in for Zowe CLI
¢ Use cases

Using IBM MQ plug-in commands

Software requirements

Installing

Creating a user profile
Secure Credential Store Plug-in for Zowe CLI
Secure Credential Store Plug-in for Zowe CLI
e Use Cases
e Commands
e Software requirements
* Installing
e Using
e Securing your credentials
e Deactivating the plug-in
Using Zowe Explorer
Using Zowe Explorer

e Usage Tips
e Sample Use Cases
e Work with Data Sets
e Work with USS Files
e Work with jobs
e MVS and TSO Commands
* Using Zowe Explorer CICS Extension
e Using Zowe Explorer CICS Extension
e Contents
e Features
e System requirements
* |Installing
e Installing from Visual Studio Code Extensions
e Installing from a VSIX file
e Getting started
e Creating profile
e Updating profile
e Hiding profiles
e Deleting profiles
e CICS resources
e Showing and filtering resources in a region
» Showing and filtering resources in a plex
e Showing and filtering resources in an 'All' resource tree
e Showing attributes
* Enabling and disabling
e New copy and phase in
e Opening and closing local files
e Untrusted TLS certificates
e Usage tips
¢ Providing feedback or contributing
e Checking the source of an error
e Filing anissue
* Uninstalling
e Using Zowe Explorer FTP Extension
* Using Zowe Explorer FTP Extension
¢ Prerequisites
* Installation
¢ Using the FTP Extension

¢ Using the Zowe CLI FTP plugin
¢ List of Supported Data Set Functionalities
¢ Providing feedback or help contributing
Using Zowe SDKs
Using Zowe SDKs
e API documentation
* Software requirements
e Node.js
e Python
e Getting started
 Install SDK from online registry
e |nstall SDK from local package
e Using
e Using - Node.js
e Using - Python
e Contributing
Extending Zowe
Extending Zowe
e Extend Zowe CLI
e Extend Zowe API Mediation Layer
e Dynamic API registration
 Static API registration
¢ Add a plug-in to the Zowe Desktop
e Sample extensions
e Sample Zowe API and API Catalog extension
e Sample Zowe Desktop extension
Packaging z/OS extensions
Packaging z/OS extensions
e Zowe server component package format
e Zowe component manifest
e Sample manifests
Install, upgrade, and configure Zowe server component
Install, upgrade, and configure Zowe server component
¢ |nstall with zowe-install-component.sh (Technical Preview)
e Upgrade with zowe-upgrade-component.sh (Technical Preview)
e Configure with zowe-configure-component.sh (Technical Preview)
* Install and configure manually
e Zowe core components

* Zowe extensions
¢ Verify with zowe-verify-component.sh (Technical Preview)
Zowe server component runtime lifecycle
Zowe server component runtime lifecycle
e Zowe runtime lifecycle
e Zowe component runtime lifecycle
e Validate
e Configure
e Start
Developing for Zowe CLI
Developing for Zowe CLI
e How can | contribute?
e Getting started
e Tutorials
e Plug-in Development Overview
e Imperative CLI Framework Documentation
» Contribution Guidelines
Setting up your development environment
Setting up your development environment
¢ Prerequisites
e |nitial setup
e Branches
¢ Clone zowe-cli-sample-plugin and build from source
e (Optional) Run the automated tests
¢ Next steps
Installing the sample plug-in
Installing the sample plug-in
e QOverview
* Installing the sample plug-in to Zowe CLI
¢ Viewing the installed plug-in
¢ Using the installed plug-in
e Testing the installed plug-in
e Next steps
Extending a plug-in
Extending a plug-in
e Overview
e Creating a Typescript interface for the Typicode response data
e Creating a programmatic API

e Exporting interface and programmatic API for other Node.js applications
e Checkpoint

e Defining command syntax

e Defining command handler

e Defining command to list group

e Checkpoint

Using the installed plug-in

Summary

Next steps

Developing a new plug-in

Developing a new plug-in

Overview
e Cloning the sample plug-in source

Changing package.json

Adjusting Imperative CLI Framework configuration

Adding third-party packages

Creating a Node.js programmatic API
e Exporting your API

Checkpoint

e Defining commands

Trying your command

Bringing together new tools!

Next steps

Implementing profiles in a plug-in

Implementing profiles in a plug-in

Next steps

Onboarding Overview

Onboarding Overview

¢ Prerequisites

e Service Onboarding Guides

e Recommended guides for services using Java

e Recommended guides for services using Node.js

* Guides for Static Onboarding and Direct Call Onboarding
e Documentation for legacy enablers

e Verify successful onboarding to the API ML

e Verifying service discovery through Discovery Service
» Verifying service discovery through the API Catalog

e Sample REST API Service

e Onboarding a REST API service with the Plain Java Enabler (PJE)
e Onboarding a REST API service with the Plain Java Enabler (PJE)

Introduction

Onboarding your REST service with APl ML
Prerequisites

Configuring your project

e Gradle build automation system

e Maven build automation system
Configuring your service

e REST service identification

e Administrative endpoints

e APlinfo

e API routing information

e API Catalog information

e Authentication parameters

e API Security

e SAF Keyring configuration

e Eureka Discovery Service

e Custom Metadata

Registering your service with APl ML
Validating the discoverability of your API service by the Discovery Service
Troubleshooting

e API Mediation Layer onboarding configuration

e API Mediation Layer onboarding configuration

Introduction

Configuring a REST service for API ML onboarding

Plain Java Enabler service onboarding API

e Automatic initialization of the onboarding configuration by a single method call
Validating successful onboarding with the APl Mediation Layer

Loading YAML configuration files

e Loading a single YAML configuration file

e |oading and merging two YAML configuration files

* Onboarding a service with the Zowe API Meditation Layer without an onboarding enabler

e Onboarding a service with the Zowe API Meditation Layer without an onboarding enabler

Introduction

Registering with the Discovery Service

» API Mediation Layer Service onboarding metadata

Sending a heartbeat to APl Mediation Layer Discovery Service

Validating successful onboarding with the APl Mediation Layer
External Resources

e Onboarding a Spring Boot based REST API Service
e Onboarding a Spring Boot based REST API Service

Outline of onboarding a REST service using Spring Boot

Selecting a Spring Boot Enabler

Configuring your project

e Gradle build automation system

e Maven build automation system

Configuring your Spring Boot based service to onboard with API ML
e Sample API ML Onboarding Configuration

e Authentication properties

e API ML Onboarding Configuration Sample

» SAF Keyring configuration

e Custom Metadata

Registering and unregistering your service with APl ML

e Unregistering your service with APl ML

e Basic routing

Adding API documentation

Validating the discoverability of your API service by the Discovery Service
Troubleshooting

e Onboarding a Micronaut based REST API service

e Onboarding a Micronaut based REST API service

Set up your build automation system
Configure the Micronaut application

e Add API ML configuration

e Add Micronaut configuration

e (Optional) Set up logging configuration
Validate successful registration

Onboarding a Node.js based REST API service
Onboarding a Node.js based REST API service

Introduction

Onboarding your Node.js service with APl ML

Prerequisites

Installing the npm dependency

Configuring your service

Registering your service with API ML

Validating the discoverability of your API service by the Discovery Service

e Onboard a REST API without code changes required
e Onboard a REST API without code changes required
¢ |dentify the APIs that you want to expose
» Define your service and API in YAML format
e Route your API
e Customize configuration parameters
¢ Add and validate the definition in the APl Mediation Layer running on your machine
¢ Add a definition in the API Mediation Layer in the Zowe runtime
¢ (Optional) Check the log of the APl Mediation Layer
¢ (Optional) Reload the services definition after the update when the APl Mediation Layer is already
started
e Zowe API Mediation Layer Single-Sign-On Overview
* Zowe API Mediation Layer Single-Sign-On Overview
e Zowe API ML client
e API service accessed via Zowe APl ML
e Existing services that cannot be modified
e Further resources
e Obtaining Information about API Services
e Obtaining Information about API Services
e APIID in the APl Mediation Layer
* Protection of Service Information
¢ API Endpoints
e (Obtain Information about a Specific Service
e Obtain Information about All Services
e Obtain Information about All Services with a Specific API ID
e Response Format
e API Mediation Layer Message Service Component
e API Mediation Layer Message Service Component
e Message Definition
e Creating a message
e Mapping a message
e API ML Logger
e Zowe API Mediation Layer Security
e Zowe API Mediation Layer Security
e How API ML transport security works
e Transport layer security
* Authentication
e Zowe API ML services

e Zowe API ML TLS requirements
e Authentication for API ML services
e Authentication parameters
e Authentication providers
» Authorization
e JWT or JSON Web Token
e 7/OSMF JSON Web Tokens Support
e API ML truststore and keystore
e API ML SAF Keyring
» Discovery Service authentication
e Setting ciphers for API ML services
e ZAAS Client
e Pre-requisites
e API Documentation
* (Getting Started (Step by Step Instructions)
» (Certificate management in Zowe APl Mediation Layer
* Running on localhost
e Zowe runtime on z/OS
API Mediation Layer routing
API Mediation Layer routing
e Terminology
¢ APIML Basic Routing (using Service ID and version)
e |mplementation Details
¢ Basic Routing (using only the service ID)
Enabling PassTicket creation for API Services that Accept PassTickets
Enabling PassTicket creation for API Services that Accept PassTickets
e Overview
e Qutline for enabling PassTicket support
e Security configuration that allows the Zowe API Gateway to generate PassTickets for an API service
e ACF2
* Top Secret
e RACF
e API services that support PassTickets
* API Services that register dynamically with API ML that provide authentication information
» API Services that register dynamically with API ML but do not provide metadata
* API services that are defined using a static YAML definition
» Adding YAML configuration to API services that register dynamically with API ML
Custom Metadata

Custom Metadata
WebSocket support in APl Gateway
WebSocket support in APl Gateway
e Security and Authentication
¢ Subprotocols
¢ High availability
e Diagnostics
e Limitations
Using the Caching Service
Using the Caching Service
e Architecture
e Storage methods
e VSAM
e Redis
e InMemory
e How to start the service
* Methods to use the Caching service API
e Configuration properties
e Authentication
e Direct calls
e Routed calls through API Gateway
Using VSAM as a storage solution through the Caching service
Using VSAM as a storage solution through the Caching service
e Understanding VSAM
e VSAM configuration
Using Redis as a storage solution through the Caching service
Using Redis as a storage solution through the Caching service
e Understanding Redis
e Redis replica instances
e Redis Sentinel
e Redis SSL/TLS
e Redis and Lettuce
¢ Redis configuration
Overview
Overview
e How Zowe Application Framework works
e Tutorials
e Samples

e Sample Iframe App
e Sample Angular App
e Sample React App
e User Browser Workshop Starter App
e Plug-ins definition and structure
e Plug-ins definition and structure
e Application plug-in filesystem structure
* Root files and directories
e Dev and source content
e Runtime content
e Default user configuration
e App-to-App Communication
e Documentation
e Location of plug-in files
e pluginsDir directory
¢ Plug-in definition file
* Plug-in attributes
e General attributes
e Application attributes
» Application web content attributes
* |Frame application web content
e Plugin Definition Schema Revision Notes
e Application Dataservices
* Application Configuration Data
e Building plugin apps
e Building plugin apps
¢ Building web content
e Building app server content
» Building zss server content
e Tagging plugin files on z/OS
* Building Javascript content (*js files)
¢ Installing
» Packaging
¢ |nstalling Plugins
e |nstalling Plugins
* By filesystem
e Adding/Installing
e Removing

Upgrading
Modifying without server restart (Exercise to the reader)

e By REST API

Old plugins folder

Embedding plugins

Embedding plugins

How to interact with embedded plugin

How to destroy embedded plugin

How to style a container for the embedded plugin

Applications that use embedding

Dataservices

Dataservices

Defining dataservices

Router-type specific attributes
Import-type specific attributes
External-type specific attributes

Defining Java dataservices

Prerequisites

Defining Java dataservices

Defining Java Application Server libraries
Java dataservice logging

Java dataservice limitations

Using dataservices with RBAC

Dataservice APIs

Router-based dataservices
ZSS based dataservices

Documenting dataservices

Authentication API
Authentication API
e Handlers

Handler installation
Handler configuration
Handler context
Handler capabilities
Examples

High availability (HA)

* REST API

Check status

¢ Authenticate

e User not authenticated or not authorized

e Not authenticated
e Not authorized

* Refresh status

e Logout

e Password changes

* Internationalizing applications

* Internationalizing applications

Internationalizing Angular applications
Internationalizing React applications
Internationalizing application desktop titles

e Zowe Desktop and window management

e Zowe Desktop and window management

Loading and presenting application plug-ins
Plug-in management
Application management
Windows and Viewports
Viewport Manager
Injection Manager

* Plug-in definition

e Logger

e Launch Metadata

e Viewport Events

e Window Events

e Window Actions
Framework APl examples

e Configuration Dataservice

e Configuration Dataservice

Resource Scope

REST API

e REST query parameters

e REST HTTP methods

e Administrative access and group
Application API

Internal and bootstrapping
Packaging Defaults

Plug-in definition

» Aggregation policies
e Examples
URI Broker
URI Broker
» Accessing the URI Broker
e Natively:
e Inaniframe:
e Functions
e Accessing an application plug-in's dataservices
e Accessing application plug-in's configuration resources
e Accessing static content
* Accessing the application plug-in's root
e Server queries
Application-to-application communication
Application-to-application communication
e Why use application-to-application communication?
e Actions
e Action target modes

Action types

Loading actions
App2App via URL
e Dynamically

e Saved on system
e Recognizers
* Recognition clauses
e |oading Recognizers at runtime
e Recognizer example
e Dispatcher
e Registry
e Pulling it all together in an example
Configuring IFrame communication
Configuring IFrame communication
Error reporting Ul
Error reporting Ul
e ZluxPopupManagerService
e ZluxErrorSeverity
e ErrorReportStruct
¢ |mplementation

¢ Declaration
e Usage
e HTML

e Logging utility

* Logging utility

Logging objects

Logger IDs

Accessing logger objects

e Logger

e Component logger

Logger API

Component Logger API

Log Levels

Logging verbosity

e Configuring logging verbosity
Using log message IDs

* Message ID logging examples

e Using Conda to make and manage packages of Application Framework Plugins

e Using Conda to make and manage packages of Application Framework Plugins

Initial Conda setup

Managing Conda channels

Searching for packages

Using Conda with Zowe

» Setting environment variables temporarily:
e Setting environment variables persistently
e |Installing a Zowe plugin

e Zowe plugin configuration

e Zowe package structure

Building Conda packages for Zowe

e Defining package properties

e Creating build step

e Lifecycle scripts

» Adding configuration to Conda packages

e Creating and adding Zowe extension containers

e (Creating and adding Zowe extension containers

¢ 1. Build and publish an extension image to a registry

¢ 2. Define Deployment or Job object

e 3. Start your component

Extending Zowe Explorer
Extending Zowe Explorer
Developing for Zowe SDKs
Developing for Zowe SDKs
Zowe Conformance Program
Zowe Conformance Program
* Introduction
e How to participate
¢ How to suggest updates to the Zowe conformance program
Troubleshooting
Troubleshooting
e Known problems and solutions
¢ Collecting data for Zowe problems
e Verifying a Zowe release's integrity
¢ Understanding the Zowe release
Understanding the Zowe release
Understanding the Zowe release
e Zowe releases
e Patch
e Minor release
e Major release
e Check the Zowe release number
Capturing diagnostics to assist problem determination
Capturing diagnostics to assist problem determination
¢ Running the diagnostic support script
e Problems that may occur running the diagnostic script
e |KJ56328I JOB job name REJECTED
Verify Zowe runtime directory
Verify Zowe runtime directory
e Step 1: Obtain the verify tool (Required for versions before v1.14)
e Step 2: Verify your runtime directory
e Step 3: Review results
e Mismatch
e Match
e zowe-verify-authenticity.sh parameters
* Use of zowe-verify-authenticity.sh by zowe-support.sh
Troubleshooting installation and startup of Zowe z/OS components
Troubleshooting installation and startup of Zowe z/OS components

e How to check if ZWESVSTC startup is successful
e Check the startup of APl Mediation Layer
e Check the startup of Zowe Desktop
* Check the startup of Zowe File and Jobs API servers
e Check the startup of Zowe Secure Services
¢ Unable to launch Zowe with { FSUM7351 }
e Unable to create BPXAS instances
e Errors caused when running the Zowe desktop with node 8.16.1
e Cannot start Zowe and UNIX commands not found with FSUM7351
e Various warnings show when connecting Zowe with another domain
Troubleshooting the certificate configuration
Troubleshooting the certificate configuration
» Configuring a certificate that uses an external certificate authority (CA)
Troubleshooting Kubernetes environments
Troubleshooting Kubernetes environments
e |ISSUE: /tmp directory is not writable
e |SSUE: Permission denied showing in pod log
e |SSUE: Deployment and ReplicaSet failed to create pod
e |SSUE: Failed to create services
Troubleshooting APl ML
Troubleshooting API ML
e Enable API ML Debug Mode
e Change the Log Level of Individual Code Components
¢ Known Issues
e API ML stops accepting connections after z/OS TCP/IP stack is recycled
e SECO0002 error when logging in to API Catalog
e API ML throws I/O error on GET request and cannot connect to other services
o (Certificate error when using both an external certificate and Single Sign-On to deploy Zowe
e Browser unable to connect due to a CIPHER error
e API Components unable to handshake
e Java z/OS components of Zowe unable to read certificates from keyring
Error Message Codes
Error Message Codes
¢ API mediation utility messages
e ZWEAMOOOI
¢ API mediation common messages
e ZWEAO102E
e ZWEAO104W

e ZWEAO105W
e ZWEAO106W
e ZWEAO401E
Common service core messages
e ZWEAM100E
» ZWEAM101E
e ZWEAM102E
e ZWEAM103E
e ZWEAM104E
» ZWEAM400E
e ZWEAM500W
e ZWEAM50TW
e ZWEAM502E
* ZWEAM503E
e ZWEAM504E
e ZWEAM505E
e ZWEAM506E
» ZWEAM507E
e ZWEAM508E
e ZWEAM509E
e ZWEAM510E
o ZWEAMSTE
e ZWEAMGOOW
e ZWEAM700E
e ZWEAM701E
Security common messages
e ZWEAT100E
e ZWEAT103E
e ZWEAT403E
e ZWEAT409E
o ZWEAT410E
e ZWEATAME
o ZWEAT412E
o ZWEAT413E
o ZWEAT414E
e ZWEATA15E
o ZWEAT416E
e ZWEATG601E

e ZWEAT602E

e ZWEAT603E
Security client messages
e ZWEAS100E

e ZWEAS101E

e ZWEAS103E

e ZWEAS104E

e ZWEAS105E

e ZWEAS120E

e ZWEAS121E

e ZWEAS123E

e ZWEAS130E

e ZWEAS131E
ZAAS client messages
e ZWEAS100E

e ZWEAS120E

e ZWEAS121E

e ZWEAS122E

e ZWEAS170E

e ZWEAS400E

e ZWEAS401E

e ZWEAS404E

e ZWEAS417E

e ZWEAS130E

e ZWEAS500E

e ZWEAS501E

e ZWEAS502E

e ZWEAS503E
Discovery service messages
e ZWEAD40OE

e ZWEAD4O1E

e ZWEAD700W

e ZWEAD701E

e ZWEAD702W

e ZWEAD703E

e ZWEAD704E
Gateway service messages
e ZWEAG500E

ZWEAG700E
ZWEAG701E
ZWEAG702E
ZWEAG704E
ZWEAG705E
ZWEAG706E
ZWEAG707E
ZWEAG708E
ZWEAG709E
ZWEAG710E
ZWEAG71E
ZWEAG712E
ZWEAG713E
ZWEAG714E
ZWEAG715E
ZWEAG716E
ZWEAG100E
ZWEAG101E
ZWEAG102E
ZWEAG103E
ZWEAG104E
ZWEAG105E
ZWEAG106W
ZWEAG107W
ZWEAG108E
ZWEAG109E
ZWEAG110E
ZWEAG120E
ZWEAG121E
ZWEAS123E
ZWEAG130E
ZWEAG131E
ZWEAG140E
ZWEAG141E
ZWEAG150E
ZWEAG151E
ZWEAG160E
ZWEAG161E

e ZWEAG162E
e ZWEAG163E
e ZWEAG164E
e ZWEAG165E
API Catalog messages
e ZWEAC100W
e ZWEACI101E
e ZWEAC102E
e ZWEAC103E
e ZWEAC104E
e ZWEAC700E
e ZWEAC701W
e ZWEAC702E
e ZWEAC703E
e ZWEAC704E
e ZWEAC705W
e ZWEAC706E
e ZWEAC707E
e ZWEAC708E
e ZWEAC709E

Troubleshooting Zowe Application Framework

Troubleshooting Zowe Application Framework

Desktop apps fail to load

NODEJSAPP disables immediately

Cannot log in to the Zowe Desktop

e ZSS server unable to communicate with X-MEM

e ZLUX unable to communicate with zssServer

e Slow performance of the VT terminal on SSH

e ZLUX unable to communicate with APl Mediation Layer

Server startup problem ret=1115

Application plug-in not in Zowe Desktop

Error: You must specify MVD_DESKTOP_DIR in your environment

Error: Zowe Desktop address space fails to start { ZWEDO115E }

Error: Exception thrown when reading SAF keyring {ZWEDO148E}
Warning: Problem making eureka request { Error: connect ECONNREFUSED }
Warning: ZWEDOQO159W - Plugin (org.zowe.zlux.proxy.zosmf) loading failed
Warning: ZWEDOO50W - Could not read swagger doc folder (..)

Warning: ZWEDO0047W - Swagger file for server (...) not found

e Warning: ZWEDO171W - Rejected undefined referrer for url=/login, ip=(...)
e Unable to log in to the explorers when using Zowe V1.13 or V1.14
e Warning: Zowe extensions access to ZSS security endpoints fail
Gathering information to troubleshoot Zowe Application Framework
Gathering information to troubleshoot Zowe Application Framework
e 7/OS release level
e Zowe version and release level
e Log output from the Zowe Application Server
e Error message codes
e Javascript console output
e Screen captures
Raising a Zowe Application Framework issue on GitHub
Raising a Zowe Application Framework issue on GitHub
¢ Raising a bug report
¢ Raising an enhancement report
Troubleshooting z/OS Services
Troubleshooting z/OS Services
e 7z/OSMF JVM cache corruption
* [solate the started task user IDs
e Update z/OSMF to not use JVM class caching
¢ Unable to generate unique CeaTso APPTAG
e 7/OS Services are unavailable
Troubleshooting Zowe CLI
Troubleshooting Zowe CLI
e Problem
e Environment
e Before reaching out for support
¢ Resolving the problem
Gathering information to troubleshoot Zowe CLI
Gathering information to troubleshoot Zowe CLI
* |dentify the currently installed CLI version
 |dentify the currently installed versions of plug-ins
e Environment variables
e Loglevels
e Home directory
e Home directory structure
e |ocation of logs
e Profile configuration

¢ Node.js and npm
e npm configuration
e npm log files
z/OSMF troubleshooting
z/OSMF troubleshooting
e Alternate methods
Known Zowe CLlI issues
Known Zowe CLI issues
e EACCESS error when issing npm install command
¢ Command not found message displays when issuing npm install commands
e npm install -g Command Fails Due to an EPERM Error
e Sudo syntax required to complete some installations
e npm install -g command fails due to npm ERR! Cannot read property 'pause' of undefined error
¢ Node.js commands do not respond as expected
* Installation fails on Oracle Linux 6
Raising a CLI issue on GitHub
Raising a CLI issue on GitHub
e Raising a bug report
¢ Raising an enhancement report
Troubleshooting Zowe Explorer
Troubleshooting Zowe Explorer
e Before reaching out for support
Known Zowe Explorer issues
Known Zowe Explorer issues
» Data Set Creation Error
¢ Opening Binary Files Error
Raising a Zowe Explorer issue on GitHub
Raising a Zowe Explorer issue on GitHub
* Raising a bug report
e Submitting a feature request
Troubleshooting Zowe Launcher
Troubleshooting Zowe Launcher
e Enable Zowe Launcher Debug Mode
Error Message Codes
Error Message Codes
e Zowe Launcher informational messages
e ZWELOOO1I
e ZWELOOO2I

e ZWELOOOS3I
e ZWELOOO4I
e ZWELOOOS5I
e Zowe Launcher error messages
e ZWELOO30E
e ZWELOOS3S8E
e ZWELOO40E
Contribute to Zowe
Contribute to Zowe
e Report bugs and enhancements
* Fix issues
e Send a Pull Request
e Report security issues
e Contribution guidelines
¢ Promote Zowe
¢ Helpful resources
Code categories
Code categories
e Programming languages
e Component-specific guidelines and tutorials
General code style guidelines
General code style guidelines
e Whitespaces
¢ Naming Conventions
* Functions and methods
e Variables
Pull requests guidelines
Pull requests guidelines
Documentation Guidelines
Documentation Guidelines
» Contributing to external documentation
e Component Categories
e Server Core
e Server Security
e Microservices
e Zowe Desktop Applications
e Web Framework
e CLIPlugins

e Core CLI Imperative CLI Framework
e Programming Languages
e Typescript
e Java
e C
Introduction
Introduction
e Clear
e Consistent
e Smart
Colors
Colors
¢ Color palette
e Light theme
e Dark theme
e Color contrast | WCAG AA standards
Typography
Typography
e Typeface
e Font weight
e Body copy
e Line scale
¢ Line-height
e Embed font
e Import font
e Specify in CSS
Grid
Grid
e 12 column grid
e Gutters
e Columns
e Margins
Iconography
Iconography
Application icon
Application icon
e General rules

¢ Shape, size, and composition

e Colors and shades

e Verify the contrast

e Use the Zowe palette

e |ayer Shadows

e Use the long shadow for consistency.

Contributing to Zowe Documentation

Contributing to Zowe Documentation

e Before You Get Started

e Getting Started Checklist

e The Zowe Documentation Repository

¢ Sending a GitHub Pull Request

e Opening An Issue for Zowe Documentation

e Documentation Style guide

Headings and titles
Technical elements
Tone

Word usage
Graphics
Abbreviations
Structure and format
Word usage

Zowe CLI command reference guide

Zowe CLI command reference guide

Zowe API reference

Zowe API reference

Zowe Binaries - Bill of Materials

Zowe Binaries - Bill of Materials
e Zowe PAX
e Zowe CLI Package

e Zowe CLI Plugins

Version: v1.28.x LTS

Zowe overview

Zowe™ is an open source software framework that allows mainframe development and operation teams to
securely manage, control, script, and develop on the mainframe. It was created to host technologies that
benefit the IBM Z platform for all members of the Z community, including Integrated Software Vendors
(ISVs), System Integrators, and z/OS consumers. Like Mac or Windows, Zowe comes with a set of APIs and
OS capabilities that applications build on and also includes some applications out of the box. Zowe offers
modern interfaces to interact with z/OS and allows you to work with z/OS in a way that is similar to what you
experience on cloud platforms today. You can use these interfaces as delivered or through plug-ins and
extensions that are created by clients or third-party vendors. Zowe is a project within the Open Mainframe

Project.

Zowe demo video

Watch this video to see a quick demo of Zowe.

Download the deck for this video | Download the script

Component overview

https://www.youtube.com/embed/NX20ZMRoTtk
https://docs.zowe.org/assets/files/Zowe_introduction_video_deck-fbb2a23bfe28dd10f5a003a305350c92.pptx
https://docs.zowe.org/assets/files/Zowe_introduction_video_script-cd119a2662821b55ad9bb5108f40f261.txt

Zowe consists of the following components:

e Zowe Application Framework

e API| Mediation Layer

e Zowe CLI

e Zowe Explorer

e Zowe Client Software Development Kits SDKs
e Zowe Launcher

e ZEBRA (Zowe Embedded Browser for RMF/SMF and APIs) - Incubator

Zowe Application Framework

A web user interface (Ul) that provides a virtual desktop containing a number of apps allowing access to
z/OS function. Base Zowe includes apps for traditional access such as a 3270 terminal and a VT Terminal, as
well as an editor and explorers for working with JES, MVS Data Sets and Unix System Services.

Ll Learn more

The Zowe Application Framework modernizes and simplifies working on the mainframe. With the Zowe
Application Framework, you can create applications to suit your specific needs. The Zowe Application
Framework contains a web Ul that has the following features:

* The web Ul works with the underlying REST APIs for data, jobs, and subsystem, but presents the
information in a full screen mode as compared to the command line interface.

e The web Ul makes use of leading-edge web presentation technology and is also extensible through
web Ul plug-ins to capture and present a wide variety of information.

* The web Ul facilitates common z/OS developer or system programmer tasks by providing an editor
for common text-based files like REXX or JCL along with general purpose data set actions for both
Unix System Services (USS) and Partitioned Data Sets (PDS) plus Job Entry System (JES) logs.

The Zowe Application Framework consists of the following components:
e Zowe Desktop

The desktop, accessed through a browser. The desktop contains a number of applications,
including a TN3270 emulator for traditional Telnet or TLS terminal access to z/OS, a VT Termnial for
SSH commands, as well as rich web GUI applications including a JES Explorer for working with jobs
and spool output, a File Editor for working with USS directories and files and MVS data sets and
members. The Zowe desktop is extensible and allows vendors to provide their own applications to

run within the desktop. See Extending the Zowe Desktop. The following screen capture of a Zowe
desktop shows some of its composition as well as the TN3270 app, the JES Explorer, and the File

Editor open and in use.

COPYJOB - Editor

X =0 TN3270 - localhost:992

File Explorer

Hast localhost

3 Moed 2(24x80) % .

4 WINCHJ =2, o =1, Column gg International EBCDIC 1047
& WINCHJLJCL
[BEER
I BOBBY
[CAT
& COFFEE
L coPY.08 |
[FISH
W FRIDAY
[FROM
& NEW?
BT

B WINCH.) JCL DEMO
I WINCHJ PARMLIB

evenh/ 185

JES Explorer

¥ s Explorer

L}

MVS Explorer

Available
Apps

had JES Explorer

@~

Amdy APl Catalog

evenh/ 1058/ ing

00O wuu

» Zowe Application Server

The Zowe Application Server runs the Zowe Application Framework. It consists of the Node.js
server plus the Express.js as a webservices framework, and the proxy applications that
communicate with the z/OS services and components.

e ZSS Server

The ZSS Server provides secure REST services to support the Zowe Application Server. For
services that need to run as APF authorized code, Zowe uses an angel process that the ZSS Server
calls using cross memory communication. During installation and configuration of Zowe, you will
see the steps needed to configure and launch the cross memory server.

* Application plug-ins

Several application-type plug-ins are provided. For more information, see Using the Zowe
Application Framework application plug-ins.

https://docs.zowe.org/v1.28.x/extend/extend-desktop/mvd-extendingzlux
https://docs.zowe.org/v1.28.x/user-guide/mvd-using#zowe-desktop-application-plug-ins

API Mediation Layer

Provides a gateway that acts as a reverse proxy for z/OS services, together with a catalog of REST APIs and
a dynamic discovery capability. Base Zowe provides core services for working with MVS Data Sets, JES, as

well as working with zZOSMF REST APIs. The APl Mediation Layer also provides a framework for Single Sign
On (SSO).

Ll Learn more

The API Mediation Layer provides a single point of access for mainframe service REST APIs. The layer
offers enterprise, cloud-like features such as high-availability, scalability, dynamic API discovery,
consistent security, a single sign-on experience, and documentation. The APl Mediation Layer facilitates
secure communication across loosely coupled microservices through the APl Gateway. The API
Mediation Layer consists of three components: the Gateway, the Discovery Service, and the Catalog.
The Gateway provides secure communication across loosely coupled API services. The Discovery
Service enables you to determine the location and status of service instances running inside the APl ML
ecosystem. The Catalog provides an easy-to-use interface to view all discovered services, their
associated APIs, and Swagger documentation in a user-friendly manner.

Key features

* Consistent Access: API routing and standardization of API service URLs through the Gateway
component provides users with a consistent way to access mainframe APIs at a predefined
address.

e Dynamic Discovery: The Discovery Service automatically determines the location and status of API
services.

e High-Availability: APl Mediation Layer is designed with high-availability of services and scalability in
mind.

e Caching Service: This feature is designed for Zowe components in a high availability configuration.
It supports the High Availability of all components within Zowe, allowing components to be stateless
by providing a mechanism to offload their state to a location accessible by all instances of the
service, including those which just started.

e Redundancy and Scalability: API service throughput is easily increased by starting multiple API
service instances without the need to change configuration.

» Presentation of Services: The API Catalog component provides easy access to discovered API
services and their associated documentation in a user-friendly manner. Access to the contents of
the API Catalog is controlled through a z/OS security facility.

e Encrypted Communication: API ML facilitates secure and trusted communication across both
internal components and discovered API services.

https://docs.zowe.org/v1.28.x/getting-started/extend/extend-apiml/api-mediation-sso#zowe-api-mediation-layer-single-sign-on-overview

API Mediation Layer architecture

The following diagram illustrates the single point of access through the Gateway, and the interactions

between API ML components and services:

User accesses API

service via API
client (Example:
Zowe CLI)

—> API Client

User

services through

User accesses API

API Client

Caching Service

API Service can
store state in
Caching Service

_________________________________>

call z/OS

API's even when
running off z/OS

z/OS low level service
(ZSS or other)

Gateway accesses API
services through
Gateway
Gateway can store
Registers / state in Caching
)) Heartbeats) Service
—» Discovery Service Gateway Service F----------- >
:
Routed to via :
Gateway User authentication '
l & authorization '
1
1
:
Authentication & :
API Catalog L : '
Authorization service :
:
Routed to via :
Gateway '
1
1
l :
Registers / 1
Heartbeats '
API Service ;
1
. Can
1
1
1
:
z/OS Product RREE
Components

The API Layer consists of the following key components:

API Gateway

Services that comprise the API ML service ecosystem are located behind a gateway (reverse proxy). All
end users and API client applications interact through the Gateway. Each service is assigned a unique
service ID that is used in the access URL. Based on the service ID, the Gateway forwards incoming API
requests to the appropriate service. Multiple Gateway instances can be started to achieve high-
availability. The Gateway access URL remains unchanged. The Gateway is built using Netflix Zuul and
Spring Boot technologies.

Discovery Service

The Discovery Service is the central repository of active services in the API ML ecosystem. The
Discovery Service continuously collects and aggregates service information and serves as a repository
of active services. When a service is started, it sends its metadata, such as the original URL, assigned
serviceld, and status information to the Discovery Service. Back-end microservices register with this
service either directly or by using a Eureka client. Multiple enablers are available to help with service on-
boarding of various application architectures including plain Java applications and Java applications that
use the Spring Boot framework. The Discovery Service is built on Eureka and Spring Boot technology.

Discovery Service TLS/SSL

HTTPS protocol can be enabled during APl ML configuration and is highly recommended. Beyond
encrypting communication, the HTTPS configuration for the Discovery Service enables heightened
security for service registration. Without HTTPS, services provide a username and password to register
in the API ML ecosystem. When using HTTPS, only trusted services that provide HTTPS certificates
signed by a trusted certificate authority can be registered.

API Catalog

The API Catalog is the catalog of published API services and their associated documentation. The
Catalog provides both the REST APIs and a web user interface (Ul) to access them. The web Ul follows
the industry standard Swagger Ul component to visualize APl documentation in OpenAPI JSON format
for each service. A service can be implemented by one or more service instances, which provide exactly

the same service for high-availability or scalability.
Catalog Security

Access to the API Catalog can be protected with an Enterprise z/OS Security Manager such as IBM
RACF, ACF2, or Top Secret. Only users who provide proper mainframe credentials can access the
Catalog. Client authentication is implemented through the z/OSMF API.

Caching Service

It provides an API in high-availability mode which offers the possibility to store, retrieve and delete data
associated with keys. The service will be used only by internal Zowe applications and will not be
exposed to the internet.

Metrics Service (Technical Preview)

The Metrics Service provides a web user interface to visualize requests to APl Mediation Layer services.
HTTP metrics such as number of requests and error rates are displayed for each API Mediation Layer
service. This service is currently in technical preview and is not ready for production.

Onboarding APIs

Essential to the API Mediation Layer ecosystem is the API services that expose their useful APIs. Use the
following topics to discover more about adding new APIs to the APl Mediation Layer and using the API
Catalog:

Onboarding Overview

Onboard an existing Spring Boot REST API service using Zowe APl Mediation Layer

Onboard an existing Node.js REST API service using Zowe API Mediation Layer

Using API Catalog

To learn more about the architecture of Zowe, see Zowe architecture.

Zowe CLI

Zowe CLI is a command-line interface that lets you interact with the mainframe in a familiar, off-platform
format. Zowe CLI helps to increase overall productivity, reduce the learning curve for developing mainframe
applications, and exploit the ease-of-use of off-platform tools. Zowe CLI lets you use common tools such as
Integrated Development Environments (IDEs), shell commands, bash scripts, and build tools for mainframe
development. Though its ecosystem of plug-ins, you can automate actions on systems such as IBM Db2,
IBM CICS, and more. It provides a set of utilities and services for users that want to become efficient in
supporting and building z/OS applications quickly.

Ll Learn more
Zowe CLI provides the following benefits:

https://docs.zowe.org/v1.28.x/extend/extend-apiml/onboard-overview
https://docs.zowe.org/v1.28.x/extend/extend-apiml/onboard-spring-boot-enabler
https://docs.zowe.org/v1.28.x/extend/extend-apiml/onboard-nodejs-enabler
https://docs.zowe.org/v1.28.x/user-guide/api-mediation-api-catalog
https://docs.zowe.org/v1.28.x/getting-started/zowe-architecture

e Enables and encourages developers with limited z/OS expertise to build, modify, and debug z/OS

applications.

e Fosters the development of new and innovative tools from a computer that can interact with z/OS.
Some Zowe extensions are powered by Zowe CLI, for example the Visual Studio Code Extension for

Zowe.

* Ensure that business critical applications running on z/OS can be maintained and supported by
existing and generally available software development resources.

* Provides a more streamlined way to build software that integrates with z/OS.

Note: For information about software requirements, installing, and upgrading Zowe CLI, see Installing

Zowe.

Zowe CLI capabilities

With Zowe CLI, you can interact with z/OS remotely in the following ways:

* Interact with mainframe files: Create, edit, download, and upload mainframe files (data sets)
directly from Zowe CLI.

e Submit jobs: Submit JCL from data sets or local storage, monitor the status, and view and
download the output automatically.

e |Issue TSO and z/OS console commands: Issue TSO and console commands to the mainframe
directly from Zowe CLI.

* Integrate z/OS actions into scripts: Build local scripts that accomplish both mainframe and local
tasks.

e Produce responses as JSON documents: Return data in JSON format on request for
consumption in other programming languages.

For detailed information about the available functionality in Zowe CLI, see Zowe CLI Command Groups.

For information about extending the functionality of Zowe CLI by installing plug-ins, see Extending Zowe
CLI.

More Information:

e System requirements for Zowe CLI

 |Installing Zowe CLI

https://docs.zowe.org/v1.28.x/user-guide/ze-install
https://docs.zowe.org/v1.28.x/user-guide/installandconfig
https://docs.zowe.org/v1.28.x/getting-started/user-guide/cli-usingcli#understanding-core-command-groups
https://docs.zowe.org/v1.28.x/user-guide/cli-extending
https://docs.zowe.org/v1.28.x/user-guide/systemrequirements-cli
https://docs.zowe.org/v1.28.x/user-guide/cli-installcli

Zowe Explorer

Zowe Explorer is a Visual Studio Code extension that modernizes the way developers and system
administrators interact with z/OS mainframes. Zowe Explorer lets you interact with data sets, USS files, and
jobs that are stored on z/OS. The extension complements your Zowe CLI experience and lets you use
authentication services like APl Mediation Layer. The extension provides the following benefits:

e Enabling you to create, modify, rename, copy, and upload data sets directly to a z/OS mainframe.

e Enabling you to create, modify, rename, and upload USS files directly to a z/OS mainframe.

e Providing a more streamlined way to access data sets, uss files, and jobs.

e Letting you create, edit, and delete Zowe CLI zosmf compatible profiles.

e Letting you use the Secure Credential Store plug-in to store your credentials securely in the settings.

e Letting you leverage the APl Mediation Layer token-based authentication to access z/OSMF.

For more information, see Information roadmap for Zowe Explorer.

Zowe Client Software Development Kits (SDKs)

The Zowe Client SDKs consist of programmatic APIs that you can use to build client applications or scripts
that interact with z/OS. The following SDKs are available:

e Zowe Node.js Client SDK
e Zowe Python Client SDK

For more information, see Using the Zowe SDKs.

Zowe Launcher

Provides an advanced launcher for Zowe z/OS server components in a high availability configuration. It
performs the following operations:

e Stopping the Zowe server components using the STOP (or P) operator command

e Stopping and starting specific server components without restarting the entire Zowe instance using
MODIFY (or F) operator command

ZEBRA (Zowe Embedded Browser for RMF/SMF and APIs) - Incubator

https://docs.zowe.org/v1.28.x/getting-started/user-roadmap-zowe-explorer
https://docs.zowe.org/v1.28.x/user-guide/sdks-using

Provides re-usable and industry compliant JSON formatted RMF/SMF data records, so that many other ISV
SW and users can exploit them using open-source SW for many ways.

For more information, see the ZEBRA documentation or visit the ZEBRA test/trial site.

Zowe Workflow wiZard - Incubator

The Workflow wiZard delivers a workflow builder which simplifies the creation of zZOSMF workflows. The
workflow builder reads a library of templates along with a set of properties, determines which steps are
necessary based upon rules that use property values, determines a suitable order to satisfy the workflow
engine requirements, inserts variable definitions when required, and outputs workflow XML.

For more information, see the Workflow Template Reference.

Zowe Third-Party Software Requirements and Bill of
Materials

e Third-Party Software Requirements (TPSR)
» Bill of Materials (BOM)

https://github.com/zowe/zebra/tree/main/Documentation
https://zebra.talktothemainframe.com/
https://github.com/zowe/workflow-wizard/raw/main/doc/Workflow%20Templates%20Reference.docx
https://github.com/zowe/docs-site/blob/master/tpsr/tpsr-v2.5.x.md
https://docs.zowe.org/v1.28.x/appendix/bill-of-materials

Version: v1.28.x LTS

Zowe architecture

Zowe™ is a collection of components that together form a framework that makes Z-based functionality
accessible across an organization. Zowe functionality includes exposing Z-based components, such as
z/OSMF, as REST APIs. The Zowe framework provides an environment where other components can be
included and exposed to a broader non-Z based audience.

The following diagram illustrates the high-level Zowe architecture.

The diagram shows the default port numbers that are used by Zowe. These are dependent on each instance
of Zowe and are held in the Zowe instance directory configuration file instance.env . For more

information, see Creating and configuring the Zowe instance directory.

Zowe components can be categorized by location: server or client. While the client is always an end-user
tool such as a PC, browser, or mobile device, the server components can be further categorized by what
machine they run on.

Zowe server components can be installed and run entirely on z/OS, but a subset of the components can
alternatively run on Linux or z/Linux via Docker. While on z/OS, many of these components run under UNIX
System Services (USS). The components that do not run under USS must remain on z/OS when using
Docker in order to provide connectivity to the mainframe.

Zowe architecture with high availability enablement on
Sysplex

The following diagram illustrates the difference in locations of Zowe components when deploying Zowe into
a Sysplex with high availability enabled as opposed to running all components on a single z/OS system.

To enable high availability for Zowe, the ZWESLSTC started task is used rather than the ZWESVSTC started
task. Also, when using high availability, the configuration details are held ina zowe.yaml configuration file
instead of the instance.env file. zowe.yaml contains settings for each high availability instance that

the launcher starts.

https://docs.zowe.org/v1.28.x/user-guide/configure-instance-directory

The diagram above shows that ZWESLSTC has started two Zowe instances running on two separate LPARs

that can be on the same or different sysplexes.

e The Sysplex distributor port sharing enables the API Gateway 7554 ports to be shared so that incoming
requests can be routed to either the gateway on LPAR A or LPAR B.

e The discovery servers on each LPAR communicate with each other and share their registered instances,
which allows the API gateway on LPAR A to dispatch APIs to components either on its own LPAR, or
alternatively to components on LPAR B. As indicated on the diagram, each component has two input
lines: one from the API gateway on its own LPAR and one from the gateway on the other LPAR. When
one of the LPARs goes down, the other LPAR remains operating within the sysplex providing high
availability to clients that connect through the shared port irrespective of which Zowe instance is
serving the API requests.

The zowe.yaml file can be configured to start Zowe instances on more than two LPARS, and also to start
more than one Zowe instance on a single LPAR, thereby providing a grid cluster of Zowe components that
can meet availability and scalability requirements.

The configuration entries of each LPAR inthe zowe.yaml file control which components are started. This
configuration mechanism makes it possible to start just the desktop and APl Mediation Layer on the first
LPAR, and start all of the Zowe components on the second LPAR. Because the desktop on the first LPAR is
available to the gateway of the second LPAR, all desktop traffic is routed there.

The caching services for each Zowe instance, whether on the same LPAR, or distributed across the sysplex,
are connected to each other by the same shared VSMA file. This arrangement allows state sharing so that
each instance behaves similarly to the user irrespective of where their request is routed.

For simplification of the diagram above, the Zowe Explorer APl and Ul servers are not shown as being
started. If the user defines Zowe Explorer APl and Ul servers to be started in the zowe.yaml configuration
file, these servers behave the same as the servers illustrated. In other words, these services register to their
API discovery server which then communicates with other discovery servers on other Zowe instances on
either the same or other LPARs. The API traffic received by any API gateway on any Zowe instance is routed
to any of the Zowe Explorer API or Ul components that are available.

To learn more about Zowe with high availability enablement, see Zowe high availability installation roadmap.

Zowe architecture when running in Kubernetes cluster

https://docs.zowe.org/v1.28.x/user-guide/install-ha-sysplex

The following diagram illustrates the difference in locations of Zowe components when deploying Zowe into
a Kubernetes cluster as opposed to running all components on a single z/OS system.

The components on z/OS run under the Zowe started task ZWESVSTC , which has its own user ID
ZWESVUSR and includes a number of servers each with their own address space. The ZWESVSTC started
task hasa STDOUT file that includes log and trace information for its servers. Server error messages write

to STDERR . For problem determination, see Troubleshooting.

When deploying other server components into container orchestration software like Kubernetes, Zowe
follows standard Kubernetes practices. The cluster can be monitored and managed with common
Kubernetes administration methods.

e All Zowe workloads run on a dedicated namespace (zowe by default) to distinguish from other

workloads in same Kubernetes cluster.
e Zowe hasitsown ServiceAccount to help with managing permissions.

e Server components use similar instance.env or zowe.yaml on z/OS, which are stored in

ConfigMap and Secret , to configure and start.
e Server components can be configured by using the same certificates used on z/OS components.
e Zowe claimsitsown Persistent Volume to share files across components.
e Each server component runs in separated containers.
e Components may register themselves to Discovery with their own Pod name within the cluster.

e Zowe workloads use the zowe-launch-scripts initContainers step to prepare required

runtime directories.

¢ Only necessary components ports are exposed outside of Kubernetes with Service .

Zowe architecture when using Docker image

The Zowe Docker build is a technical preview.
The following diagram illustrates the difference in locations of Zowe components when using Docker as
opposed to running all components on z/OS.

The components on z/OS run under the Zowe started task ZWESVSTC , which has its own user ID

ZWESVUSR and includes a number of servers each with their own address space. The ZWESVSTC started

https://docs.zowe.org/v1.28.x/troubleshoot/troubleshooting

task hasa STDOUT file that includes log and trace information for its servers. Server error messages write

to STDERR . For problem determination, see Troubleshooting.

When Docker is used, server components not running on z/OS instead run in a Linux environment provided
via Docker container technology. The servers run as processes within the container which log to STDOUT

and STDERR of that container. Some components also write to the log directory of the Zowe instance.

App Server

The App Server is a node.js server that is responsible for the Zowe Application Framework. This server
provides the Zowe desktop, which is accessible through a web browser via port 8544. The Zowe desktop
includes a number of applications that run inside the Application Framework such as a 3270 emulator and a
File Editor.

The App Server server logs write to <INSTANCE_DIR>/1logs/appServer-yyyy—-mm—-dd—hh—-mm. log .

The Application Framework provides REST APIs for its services that are included on the API catalog tile
Zowe Application Framework thatcan be viewed at
https://<ZOWE_HOST_IP>:7554/ui/v1/apicatalog/#/tile/ZLUX/zlux .

ZSS

The Zowe desktop delegates a number of its services to the ZSS server which it accesses through the http

port 8542. ZSS is written in C and has native calls to z/OS to provide its services. ZSS logs write to STDOUT
and STDERR for capture into job logs, but also as a file into <INSTANCE_DIR>/1logs/zssServer-yyyy-
mm-dd—-hh-mm. log .

APl Gateway

The API Gateway is a proxy server that routes requests from clients on its northbound edge, such as web
browsers or the Zowe command line interface, to servers on its southbound edge that are able to provide
data to serve the request. The API Gateway is also responsible for generating the authentication token used
to provide single sign-on (SSO) functionality. The API Gateway homepage is

https://<ZOWE_HOST_IP>:7554 . Following authentication, this URL enables users to navigate to the
API Catalog.

https://docs.zowe.org/v1.28.x/troubleshoot/troubleshooting

API Catalog

The API Catalog provides a list of the API services that have registered themselves as catalog tiles. These
tiles make it possible to view the available APIs from Zowe's southbound servers, as well as test REST API
calls.

API Discovery

The API Discovery server acts as the registration service broker between the API Gateway and its
southbound servers. This server can be accessed through the URL https://<ZOWE_HOST_IP>:7552

making it possible to view a list of registered API services on the API discovery homepage.

Caching service

The Caching service aims to provide an APl which offers the possibility to store, retrieve, and delete data
associated with keys. The service is used only by internal Zowe applications and is not exposed to the
internet. The Caching service URL is https://<ZOWE_HOST_IP>:7555 . For more information about the

Caching service, see the Caching service documentation.

MVS, JES, and USS Ul

Zowe provides a number of rich GUI web applications for working with z/OS. Such applications include the
MVS Explorer for data sets, the JES Explorer for jobs, and the USS Explorer for the Unix File System. You can
access them through the Zowe desktop.

File APl and JES API

https://docs.zowe.org/v1.28.x/extend/extend-apiml/api-mediation-caching-service

The File API server provides a set of REST APIs for working with z/OS data sets and Unix files. These APIs
are used by the MVS and USS Explorer apps.

The JES API server provides a set of REST APIs for working with JES. These APIs are used by the JES
Explorer application.

Both the File APl and JES API servers are registered as tiles on the API Catalog, so users can view the
Swagger definition and test API requests and responses.

Cross Memory server

The Cross Memory server is a low-level privileged server for managing mainframe data securely. For security
reasons, it is not an HTTP server. Instead, this server has a trust relationship with ZSS. Other Zowe
components can work through ZSS in order to handle z/OS data that would otherwise be unavailable or
insecure to access from higher-level languages and software.

Unlike all of the servers described above which run under the ZWESVSTC started task as address spaces
for USS processes, the Cross Memory server has its own separate started task ZWESISTC and its own user
ID ZWESIUSR that runs the program ZWESISOQ1 .

Version: v1.28.x LTS

Frequently Asked Questions

Check out the following FAQs to learn more about the purpose and function of Zowe™.

e Zowe FAQ
e Zowe CLI FAQ
e Zowe Explorer FAQ

Zowe FAQ

What is Zowe?

LU Click to hide answer

Zowe is an open source project within the Open Mainframe Project that is part of The Linux Foundation.

The Zowe project provides modern software interfaces on IBM z/OS to address the needs of a variety of
modern users. These interfaces include a new web graphical user interface, a script-able command-line
interface, extensions to existing REST APIs, and new REST APIs on z/OS.

Who is the target audience for using Zowe?

LU Click to hide answer

Zowe technology can be used by a variety of mainframe IT and non-IT professionals. The target
audience is primarily application developers and system programmers, but the Zowe Application
Framework is the basis for developing web browser interactions with z/OS that can be used by anyone.

What language is Zowe written in?

LI Click to hide answer
Zowe consists of several components. The primary languages are Java and JavaScript. Zowe CLI and
Desktop are written in TypeScript. ZSS is written in C, while the cross memory server is written in metal

https://www.openmainframeproject.org/
https://www.linuxfoundation.org/

What is the licensing for Zowe?

LI Click to hide answer
Zowe source code is licensed under EPL2.0. For license text click here and for additional information
click here.

In the simplest terms (taken from the FAQs above) - "...if you have modified EPL-2.0 licensed source
code and you distribute that code or binaries built from that code outside your company, you must make
the source code available under the EPL-2.0."

Why is Zowe licensed using EPL2.0?

LU Click to hide answer

The Open Mainframe Project wants to encourage adoption and innovation, and also let the community
share new source code across the Zowe ecosystem. The open source code can be used by anyone,
provided that they adhere to the licensing terms.

What are some examples of how Zowe technology might be used by z/OS products
and applications?

LI Click to hide answer
The Zowe Desktop (web user interface) can be used in many ways, such as to provide custom graphical
dashboards that monitor data for z/OS products and applications.

Zowe CLI can also be used in many ways, such as for simple job submission, data set manipulation, or
for writing complex scripts for use in mainframe-based DevOps pipelines.

The increased capabilities of RESTful APIs on z/OS allows APIs to be used in programmable ways to
interact with z/OS services.

https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.txt
https://www.eclipse.org/legal/epl-2.0/faq.php

What is the best way to get started with Zowe?

LU Click to hide answer

Zowe provides a convenience build that includes the components released-to-date, as well as IP being
considered for contribution, in an easy to install package on Zowe.org. The convenience build can be
easily installed and the Zowe capabilities seen in action.

To install the complete Zowe solution, see Installing Zowe.

To get up and running with the Zowe CLI component quickly, see Zowe CLI quick start.

What are the prerequisites for Zowe?

Ll Click to hide answer

Prerequisites vary by component used, but in most cases the primary prerequisites are Java and
NodeJS on z/OS and the z/OS Management Facility enabled and configured. For a complete list of
software requirements listed by component, see System requirements for z/OS components and
System requirements for Zowe CLI.

What's the difference between using Zowe with or without Docker?

LI Click to hide answer

Docker is a download option for Zowe that allows you to run certain Zowe server components outside of
z/OS. The Docker image contains the Zowe components that do not have the requirement of having to
run on z/OS: The App server, APl Mediation Layer, and the USS/MVS/JES Explorers.

Configurating components with Docker is similar to the procedures you would follow without Docker,
however tasks such as installation and running with Docker are a bit different, as these tasks become
Linux oriented, rather than utilizing Jobs and STCs.

NOTE: z/OS is still required when using the Docker image. Depending on which components of Zowe
you use, you'll still need to set up z/OS Management Facility as well as Zowe's ZSS and Cross memory

servers.

https://zowe.org/
https://docs.zowe.org/v1.28.x/user-guide/installandconfig
https://docs.zowe.org/v1.28.x/getting-started/cli-getting-started
https://docs.zowe.org/v1.28.x/user-guide/systemrequirements-zos
https://docs.zowe.org/v1.28.x/user-guide/systemrequirements-cli

Is the Zowe CLI packaged within the Zowe Docker download?

LI Click to hide answer

At this time, the Docker image referred to in this documentation contains only Zowe server components.
It is possible to make a Docker image that contains the Zowe CLI, so additional Zowe content, such as
the CLI, may have Docker as a distribution option later.

If you are interested in improvements such as this one, please be sure to express that interest to the
Zowe community!

Does ZOWE support z/OS ZIIP processors?

Ll Click to hide answer

Only the parts of Zowe that involve Java code are ZIIP enabled. The APl Mediation Layer composed of
the API Gateway, Discovery and Catalog servers along with any Java-based services that work with
them such as the Jobs and Datasets servers are ZIIP enabled. Also, the CLI and VSCode Explorer make
large use of z/JOSMF, which is Java so they are ZIIP enabled as well. More details on portions of Zowe
which are Java (ZIIP) enabled can be found here.

This leaves C and NodeJS code which are not ZIIP enabled, BUT, we have a tech preview available
currently that allows execution of Java as well as NodeJS code, on Linux or zLinux via Docker. With the
tech preview, only the C code remains on z/OS, which is not ZIIP enabled.

How is access security managed on z/OS?

LI Click to hide answer

Zowe components use typical z/OS System authorization facility (SAF) calls for security.

How is access to the Zowe open source managed?

https://docs.zowe.org/stable/getting-started/zowe-architecture#zowe-architecture
https://www.zowe.org/download.html

LU Click to hide answer

The source code for Zowe is maintained on an Open Mainframe Project GitHub server. Everyone has
read access. "Committers" on the project have authority to alter the source code to make fixes or
enhancements. A list of Committers is documented in Committers to the Zowe project.

How do | get involved in the open source development?

LI Click to hide answer
The best way to get started is to join a Zowe Slack channel and/or email distribution list and begin
learning about the current capabilities, then contribute to future development.

For more information about emailing lists, community calendar, meeting minutes, and more, see the
Zowe Community GitHub repo.

For information and tutorials about extending Zowe with a new plug-in or application, see Extending on
Zowe Docs.

When will Zowe be completed?

LI Click to hide answer
Zowe will continue to evolve in the coming years based on new ideas and new contributions from a
growing community.

Can | try Zowe without a z/OS instance?

Ll Click to hide answer

IBM has contributed a free hands-on tutorial for Zowe. Visit the Zowe Tutorial page to learn about
adding new applications to the Zowe Desktop and and how to enable communication with other Zowe
components.

The Zowe community is also currently working to provide a vendor-neutral site for an open z/OS build
and sandbox environment.

https://github.com/zowe/community/blob/master/COMMITTERS.md
https://slack.openmainframeproject.org/
https://github.com/zowe/community/blob/master/README.md
https://docs.zowe.org/v1.28.x/extend/extend-apiml/onboard-overview
https://developer.ibm.com/tutorials/zowe-step-by-step-tutorial/

Zowe is also compatible with IBM z/OSMF Lite for non-production use. For more information, see
Configuring z/OSMF Lite on Zowe Docs.

Zowe CLI FAQ

Why might | use Zowe CLI versus a traditional ISPF interface to perform mainframe
tasks?

Ll Click to hide answer

For developers new to the mainframe, command-line interfaces might be more familiar than an ISPF
interface. Zowe CLI lets developers be productive from day-one by using familiar tools. Zowe CLI also
lets developers write scripts that automate a sequence of mainframe actions. The scripts can then be
executed from off-platform automation tools such as Jenkins automation server, or manually during
development.

With what tools is Zowe CLI compatible?

LI Click to hide answer

Zowe ClLI is very flexible; developers can integrate with modern tools that work best for them. It can
work in conjunction with popular build and testing tools such as Gulp, Gradle, Mocha, and Junit. Zowe
CLI runs on a variety of operating systems, including Windows, macOS, and Linux. Zowe CLI scripts can
be abstracted into automation tools such as Jenkins and TravisCI.

Where can | use the CLI?

LI Click to hide answer

Usage Scenario Example

https://docs.zowe.org/v1.28.x/user-guide/systemrequirements-zosmf-lite

Usage Scenario

Interactive use, in a
command prompt or bash
terminal.

Interactive use, in an IDE
terminal

Scripting, to simplify
repetitive tasks

Scripting, for use in
automated pipelines

Example

Perform one-off tasks such as submitting a batch job.

Download a data set, make local changes in your editor, then upload

the changed dataset back to the mainframe.

Write a shell script that subm